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Abstract

Recent progress in consumer hardware allowed for the
collection of a large amount of animated point cloud data,
which is on the one hand highly redundant and on the other
hand incomplete. Our goal is to bridge this gap and find a
low dimensional representation capable of approximation to
a desired precision and completion of missing data. Model-
less non-rigid 3D reconstruction algorithms, formulated as a
linear factorization of observed point tracks into static shape
component and dynamic pose, have been found insufficient
to create suitable generative models, capable of generating
new unobserved poses. This is due to the non-locality of the
linear models, over-fitting to the non-causal correlations
present in the data, which manifests in the reconstruction
containing rigidly behaving not directly connected parts.

In this paper, we propose a new method that can distin-
guish body parts and factorize the data into shape and pose
purely using topological properties of the manifold - local
deformations and neighborhoods. To obtain localized fac-
torization, we formulate the deformation distance between
two point tracks as the smallest deformation along the path
between them. After embedding such distance in low di-
mensional space, a clustering of embedded data leads to
close to rigid components, suitable as initialization for fit-
ting a model - a skinned rigged mesh, used extensively in
computer graphics. As both local deformations and neigh-
borhoods of a point are local and can be estimated only from
the part of the animation, the method can be used to recover
unobserved data in each frame.

1. Introduction
With the emergence of consumer productswith stereo and

depth cameras, a large amount of animated time-dependent
point cloud data can be collected without much effort. Such
data is on the one hand highly redundant and on the other
incomplete, typically due to occlusion. Our goal is to de-
velop algorithms for compression and completing of an-

imated point clouds by finding suitable low dimensional
representation under challenging conditions with fast defor-
mations andmovements, and a large portion of missing data,
for example, parts not facing the camera. Challenging fast
movements suggest that the problem can be solved only as
a global optimization, which lays additional obstacles when
it comes to practical implementation that does not compu-
tationally explode with the number of point tracks and the
growing length of the animation.

The simpler variant of the problem assumes that the con-
tent and thus the model of the data (template) is known (for
example a human body), and the problem can be posed
as a mesh registration [6, 26, 7]. Similar formulations
have lots of applications in medical imaging [11, 23, 3].
For the more general template-less problems, partially
due to the lack of available 3D data, researches have
mainly focused on non-rigid reconstruction from 2D point
tracks [30, 12, 18, 9, 2, 31, 32]. These approaches formu-
late the problem as matrix factorization, linearly factorizing
the observed point track data into static basis (loosely inter-
pretable as a shape component) and dynamic time-dependent
coefficients (loosely interpretable as a pose), effectively re-
ducing the degree of freedom. There has been lots of effort
in finding the most suitable reconstruction error term and
regularizer [19, 16, 13, 34] and optimization techniques for
handling missing data [10]. However, it has been shown
that the methods perform poorly if missing data is struc-
tured (correlated) [1, 22] as in our case. Furthermore, linear
models are not localized and tend to recover correlations
in the data that are not causal. For example, for a walking
person, movements of a left hand and a right foot are highly
correlated, but in a meaningful generative model, capable
of sampling new unobserved poses, their dependency is not
desired. The same artifacts appear, when the factorization
methods are applied to 3D data [20], because they treat
observed points as independent disregarding pairwise cor-
relations in the local neighborhoods. To tackle this problem,
an ensemble of models (union of subspaces) has been pro-
posed [27, 28], formulating the problem as an optimization
with costs permodel [14] (label costs), solved approximately
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using alpha expansion [8]. To avoid over-fitting, the models
have to be very simple (usually planar), and thus a large
number of models are required, which makes them unable
to extrapolate outside of observed data. Combining global
and local models has been proposed in [21], which samples
local models only from the global model solution. Generally
all mentioned methods are computationally very expensive,
as the optimization problem of the size that grows with the
number of point tracks and length of the animation has to be
solved. This motivated a research on non-rigid reconstruc-
tion by iterative warping of estimated geometry into the live
frame [24]. The incremental nature of the method makes
it applicable only to slow trackable movements of content
with perceived fixed topology, as incorrect alignment would
result in irrecoverable model corruption. Tracking-based
methods as in [25, 5, 15] provides means for motion track-
ing, yet requiringmanual initialization of the skinnedmodel.
Recently, deep learning based approaches [4, 33, 17] have
been proposed to factorizemeshes into pose and static shape.

We propose a novel method that can distinguish body
parts and factorize the data into shape and pose purely using
topological properties of the manifold - local neighborhoods
and their deformations. To obtain such localized factoriza-
tion, we formulate the deformation distance between two
point tracks as the smallest deformation along the path be-
tween them. After embedding such distance in low dimen-
sional space, a clustering of embedded data leads to close
to rigid components, suitable as an initialization for fitting a
model - a skinned riggedmesh, used extensively in computer
graphics applications for deformable objects. We show how
to estimate all its components - a static mesh, a set of limbs,
their transformation matrices in each frame, and association
weights of points with each limb. Both inputs of the meth-
ods - local deformations and neighborhoods of a point are
local, and thus can be estimated only from the part of the
animation, where each point is observable. This makes the
algorithm applicable in the presence of missing data and can
be used for the completion of 3D point tracks. We applied
our method on artificial computer graphics models and real-
world capture data and demonstrate that the method works
robustly in both cases.

2. Non-rigid reconstruction and 3D data com-
pletion

2.1. Preliminaries

Deformable meshes in computer graphics applications,
such as computer games or movies, are almost exclusively
modeled and animated using skinned rigged meshes. This
is due to the flexibility of this data representation to model a
large class of objects including humans, animals or robots.

A skinned rigged mesh consists of a static mesh with an
additional underlying skeleton, containing a set of joints,

connected by limbs, forming a tree. Note that joints and
limbs are interchangeable when it comes to transformations
of the mesh - the transformation of a joint can be interpreted
as that of its child limb. To create an animation, artists have
to provide (or calculate using inverse kinematics) additional
transformation matrices T k

m for each limb m ∈ {1..M} in
each frame k ∈ {1..K}, where M is the number of limbs
andK the number of frames of an animation.

Each point (vertex) xi, i ∈ {1..N}, on the static input
mesh is associated with each limb m, by weights wim ≥
0, such that ∀i

∑
m∈{1..M} wim = 1. Only a sparse set

(typically 1-3) of weights for each limb is non-zero. Given
the matrices T k

m for a frame k, each point xi transforms as:

xki = fkmxi =
∑

m∈{1..M}

wimT
k
mxi, (1)

where xki is the position of a vertex xi in the frame k and
fkm =

∑
m∈{1..M} wimT

k
m. In general, any other interpola-

tion function (for example SLERP interpolation of a rotation
component [29]) can be used. The goal of this paper is to
recover an underlying set of limbs, static template mesh and
weightswim given a set of potentially noisy point tracks xki .
This is achieved without any additional assumption about
the source and content of the data such as shape templates
(it does not have to be human).

2.2. Relative deformation measures

Deformation measure on limbs Movement of limbs is
the only source of deformation. Thus, we recover limbs by
predicting them based on deformations measured in point
data. Relative deformation between two neighboring limbs
m and n is defined as follow. Given the transformation
matrices Tm and Tn in frames k and l, the deformation is
defined as deformation measure (distance) between relative
transformations as:

Dkl(m,n) = |T kl
m , T

kl
n |, (2)

where T kl
m = (T k

m)−1T l
m is the relative transformation of a

limb m between k-th and l-th frame, and |.| is any metric
defined on transformation matrices. Note that if the trans-
formation of two limbs is rigid, T kl

m = T kl
n , and thus their

deformation distance is 0.
If we used the same definition (2) for non-neighboring

limbs as in [20], we might recover non-causal correlation in
the data. Using such low-dimensional models might better
approximate data, but would lead to an impractical non-
local representation. Intuitively, the deformation between
two limbs according to equation (2) should be 0 only if
the whole path in the skeleton between these two limbs
transforms rigidly. This observation leads to the definition
of the deformation between non-neighboring limbs as:

Dkl(m,n) =
∑

a∈{1..A−1}

Dkl(P (a), P (a+ 1)), (3)



Figure 1. Description of the proposed non-rigid reconstruction al-
gorithm. Given a set of 3D input point tracks the deformation
distances between neighboring points are calculated using their es-
timated transformation matrices. The deformation costs between
non-neighboring points are calculated using short paths. The sec-
ond depicted image contains distances from the selected point on
an elbow (pointed by the arrow). The distance matrix is embedded
in a low-dimensional space by calculating eigenvectors. The third
image shows the top three eigenvectors as RGB values normalized
to [0, 255]. Spectral clustering is performed to obtain an initial
set of limbs (depicted in the forth image), which are iteratively
re-estimated together with association weights of points to each
cluster. The final image shows the reconstruction with point colors
calculated by blending cluster colors using association weights.

where (P (1), P (2)..P (A)) is the path in the skeleton be-
tween limbs P (1) = m and P (T ) = n. In case this de-
formation distance between two limbs is 0 for each pair of
frames, the whole path between them should be recovered
as a single rigid limb, as this is indistinguishable from but
simpler than a set of rigidly transforming limbs.

Deformationmeasure on points The definition of the de-
formation distance can be adjusted to measure deformation
between neighboring points in the point tracks xki . We will
denote that xj ∈ N(xi) is in the neighborhood of xi, if
∀k : |xki − xkj | < ε, where ε is a threshold chosen depend-
ing on the density of input points. We define the relative
transformation tkli of a point xi between frames k and l as:

tkli = argmin
T ′

∑
j∈Ni

||xlj − T ′xkj ||0, (4)

where |.|0 is an L0 pseudo-norm maximizing the number
of inliers within a certain small δ threshold and can be
estimated using RANSAC. The local deformation distance
between neighboring points xi and xj ∈ N(xi) can be
defined as:

dkl(i, j) = |tkli , tklj |. (5)

The total deformation between neighboring points over the
whole animation d̄ij is a simple sum over all frames:

d̄ij =
∑

(k,l)∈P

dkl(i, j), (6)

and the total deformation between non-neighboring points
xi and xj /∈ N(xi) as:

d̄ij =
∑

a∈{1..A−1}

d̄p(a),p(a+1), (7)

where (p(1), p(2)..p(A)) is the shortest path with respect
to the deformation measure between points p(1) = i and
p(T ) = j.

Relation between deformation measure on limbs and
points Consider the shortest path between two points i
and j, each placed near a pair of neighbouring joints of a
limbm and n. We can assume, the points in the neighbour-
hood of the joint of a limb m transform purely according
to the T k

m with wim = 1 and win = 0. As we get closer
to joint of a limb n the weights will monotonically change,
eventually reaching wjm = 0 and wjn = 1. The assump-
tion of monotonicity implies that for a distance measure d̄,
satisfying condition (any L1-like distance):

d̄ij(w1t
i+(1−w1)tj , w2t

i+(1−w2)tj) = |w1−w2|d̄ij(ti, tj),
(8)

the relation between deformationD(.) between neighboring
limbsm and n, and deformation d̄ij between points i and j
purely transforming according to the transformation of limbs
m respectively n is:

d̄ij =
∑

(k,l)∈P

Dkl(m,n). (9)

The same observation can be generalized to the distances
between any pairs of points associated purely with a single
limb under assumption, the shortest path between them will
go through points purely associated with limbs along the
path, which is a good approximation in practice. This is a key
observation, as the relation between deformation allows us
to recover the limbs just by studying and analyzing observed
points tracks instead of unobserved limbs.

2.3. Low-dimensional embedding

Next we find a low-dimensional embedding of d̄ in a
coordinate space Z, in which the euclidian distance is ap-
proximately equal to the deformation distance. Finding such
embedding is a well understood problem, known as multi-
dimensional scaling or principal coordinates analysis. First
double centering is applied:

B = −1

2
Jd̄J, (10)

where J = I − 1
N 11T . Then the matrix B is factorized

using eigen-decomposition and the largest m eigenvalues
with corresponding eigenvectors Em are found. The m-
dimensional embedding Z of the data is calculated as:

Z = EmΛ1/2
m , (11)



where Λm is the diagonal matrix of top m eigenvalues The
parameter m is chosen depending on the expected level of
noise in the data characterized by a threshold λmin, such
that ∀k : λk > λmin.

Computationally efficient implementation The calcula-
tion of eigen-decomposition for large matrices can be too
expensive. Computationally, the formulation is identical to
ISOMAP dimensionality reduction. The only difference is
conceptual, as a different distance measure is used in d̄ and
in the neighborhood calculation. Thus, we can use tech-
niques, in particular Landmark ISOMAP, originally devel-
oped to speed up the ISOMAP method. Instead of building
a distance matrix d̄ for all pairs of vertices, we calculate
the distance of all points to a random subset of landmark
points. Assuming the size of this subset is still much larger
than the expected dimensionality of the low-dimensional
embedding, the approximation is expected to be of reason-
able quality. First, the matrix d̄ is double centered and then
eigen-decomposition is solved only for the square matrix of
landmark points. After calculating embedding on landmark
points only, the coordinates for non-landmark points will be
zi = − 1

2 (bi − s)Z+, where bi is the row of the centered
matrix B, s is the mean vector of the landmark sub-matrix
and Z+ is the pseudo-inverse transpose of Z. Note that the
landmark approximation would not be possible if the the
shortlest path (for example as in [20]) was not used as the
distance measure between arbitrary pair of points, making
the problem practically infeasible for even average-size point
clouds with thousands of points.

2.4. Recovering components of a skinned rigged
model

As we show in this section, all components of a skinned
rigged mesh data representation can be recovered from prin-
cipal components of the deformation distance.

Limbs As already stated in our motivation for the defini-
tion of deformation distance, if there exists a path between
a pair of points that transforms rigidly, the deformation be-
tween these points is 0. This suggests that by performing
clustering (such as K-means) on the coordinates of the low
dimensional embedding (a.k.a. spectral clustering), we get
a set of clusters close to rigid. Thus, the clusters can be
used as an initial estimate of limbs. In our implementation,
the clustering procedure is initialized using combinations of
extreme values of each coordinate in the low-dimensional
embedding disregarding clusters with too few points. Each
clusterm (later associated with a limb) will eventually con-
sist of an initial set of point tracks xk

m for each frame k.

Static template and transformation matrices Using the
initial clusters (limbs), we estimate the static mesh template

x and transformationmatricesT k
m incrementally by initializ-

ing T 1
m = I and x

(1)
m = x1

m, where (.) denotes an iteration,
aligning points of the cluster in each frame to a template
and adjusting the template using aligned points. This step is
equivalent to operations described in [15] only differs in that
instead of using Gaussian mixture, a skinned rigged model
is applied in our case. the The alignment is calculated by
minimizing:

T k
m = argmin

T ′

∑
k∈{1..K}

∑
i∈xm

||T ′−1xki − x
(k−1)
i ||0, (12)

where |.|0 is a L0 pseudo-norm maximizing the number of
inliers using RANSAC. The template is updated as a running
mean to

x(k)m =
k − 1

k
x(k−1) +

1

k
(T k

m)−1x(k−1)m . (13)

Several iterations over all frames can be performed to im-
prove the quality. In practice the procedure converges after
only a few iterations.

Weights associations with limbs The weights wim are
estimated by minimizing the reprojection error in all frames
as a non-negative least square problem:

wi = argmin
w′

i

∑
k∈{1..K}

(
∑

m∈{1..M}

w′imT
k
mxi − xki )2, (14)

such that ∀m : wim ≥ 0 and
∑

m∈{1..M} wim = 1. In
practice it is enough to use top three limbs either according
to the distance in the low-dimensional embedding or based
on their pure reprojection error with wim = 1. Using these
weight vectors, we can reestimate limb cluster to consist
of points with the highest weight associated with it and
repeat the whole procedure of estimating a static template,
transformation matrices and weights.

2.5. 3D Data completion

In many practical applications, where the source of the
data are standard stereo or depth cameras, only a fraction
of points is observed in each frame. We show that under a
much weaker assumption, that for each limb at least a small
fraction of its points are visible in most frames, we are able
to recover and complete unobserved data.

To generalize our method to this much more challenging
real-world scenario, we have to modify only the definition
of basic local topological properties - the notion of neigh-
borhood and total local deformation between neighboring
points. Let δki be an indicator variable denoting whether
i-th point is visible in k − th frame. We will denote that
xj ∈ N(xi) is in the neighborhood of xi for incomplete



noise mean± SD median

0.000 0.02415± 0.01200 0.02086

0.002 0.02922± 0.02232 0.01991

0.010 0.03359± 0.01982 0.02708

0.020 0.03318± 0.01409 0.02991

0.030 0.04461± 0.02285 0.03867

0.040 0.04503± 0.01882 0.04169

Table 1. Quantitative evaluation of robustness to gaussian noise.
The error is calculated for models scaled to height 1. The noise
is in the same units as the reconstruction error. The error of our
method is calculated with respect to ground truth with no noise.
As seen from the table, the error of the reconstruction converges to
the level of noise.

point tracks, if it is in its neighborhood in a nonempty set of
all frames where both points are jointly visible:

∀k : |xki − xkj |δki δkj < ε. (15)

Next we modify total deformation for neighboring points as
an average over deformations in frames where both points
are visible:

d̄ij =
1∑

(k,l)∈P δ
k
i δ

k
j

∑
(k,l)∈P

dkl(i, j)δki δ
k
j . (16)

The total deformation for non-neighbouring points will be
defined the same way as before without any modification
as the shortest path (7) through the generated graph. After
performing spectral clustering over modified deformation
function, the transformation matrices (12) for each limb
in each frame and weights (14) for each vertex are simply
calculated only from points visible in the corresponding
frames. The location of unobserved points in each frame
can be recovered using (1) with estimated transformation
matrices and their location in the static mesh.

3. Experiments
We performed experiments on Mixamo and DFAUST

dataset [7]. Mixamo dataset is a large free collection of arti-
ficial characters and a practically infinite number of paramet-
ric animations from the same-named 3d graphics technology
company. We tested our algorithm on several characters and
animations downloaded from www.mixamo.com and wolf
and spider model from 3dhaupt.com. As an input of our
algorithm, we generated an animated point cloud by ran-
domly sampling 2000 points on the surface of each mesh.
We run our method on two problems - compression and
completion. For the first problem, we assumed all points
are constantly visible. For the second problem, a camera
performed 1080 degree rotation around the vertical axis of
the object with only a subset of points facing the camera

visible in each frame. The qualitative results of the com-
pression are depicted in Figure 2. As a typical human body
has ˜12-20 independent limbs that at this coarse scale, in
practice 5 eigenvectors can represent all dominant degrees
of freedom. The landmark approximation has been done
using 200 landmark points. As seen in the figure, the es-
timation of 5 eigenvectors is rather robust and often look
identical that only differ in order. The first two typically
split a body into the left and right part, and the top and
bottom part, and the following ones recover individual rigid
parts. The next step, spectral clustering, is more random
and can change dramatically for the same character and dif-
ferent animation. The final step - iterative optimization of
deformation matrices and weight associations smoothes out
the initial solution, leading to much more visually pleasant
and more robust results. The method generally works well
for any complete input with data generated using the same
process in the experiments.

The data completion results are shown in Figure 4. Sim-
ilarly to full point tracks, the estimation of eigenvectors was
still robust, because in most cases even a small number of
diverse frames is enough to identify deforming parts. The
main problem in this step was the estimation of deformation
for neighbouring points in highly concave regions which
typically led to a higher number of estimated independently
moving limbs. Yet the model was still typically able to re-
cover locations of all points, if all limbs were at least partly
visible. Quantitative comparisons of reconstruction error
with [20] for complete and partial points can be found in
Table 3. To get a fair comparison, we fixed the number of
clusters to 15 (20 for Spider). The errors for partial tracks are
surprisingly only 2x higher than for complete tracks setting.
The average runtime for a single animation for complete
tracks was around 10 minutes and for partial tracks around
30 minutes since RANSAC procedure for the latter has to
be processed on per-frame basis. We performed an ablation
study on the robustness of our method to noise by adding
Gaussian noise of varying σ to the input and compared re-
construction error with noise-free ground truth. The recon-
struction errors are shown in Table 2 which can be observed
to converge to the level of noise.

Dynamic FAUST (DFAUST) [7] dataset is a collection of
4D scans with multiple human subjects in motion, recorded
in a controlled environment at 60 fps. Similarly to artificial
data, we run our method for compression and completion.
We generated partial tracks using the same procedure as for
artificial data. The qualitative results of compression are
depicted in Figure 3. The estimated eigenvectors seemed
equally robust to the artificial data, with the exception of
performance on fat people that more clusters are needed
with independent models for belly and back. The qualitative
result for data completion can be found in Figure 5. Simi-
larly to artificial data, typically a larger number of clusters
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Figure 2. Low-dimensional approximation on the artificial Mixamo data. Each column consisting of four frames corresponds to different
animation. A Input point tracks (also ground truth). B First three eigenvector displayed as RGB values normalized to [0-255]. C Fourth
and fifth eigenvector, displayed as RG values normalized to [0-255]. D Initial spectral clustering, performed on five eigenvectors. E
Reconstruction using low-dimensional model. Point colors calculated by blending cluster colors using weights w.
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Figure 3. Low-dimensional approximation on DFAUST dataset [7]. Each column consisting of four random frames corresponds to different
animation. A Input point tracks (also ground truth). B First three eigenvector displayed as RGB values normalized to [0-255]. C Fourth
and fifth eigenvector, displayed as RG values normalized to [0-255]. D Initial spectral clustering, performed on five eigenvectors. E
Reconstructions using low-dimensional model. Point colors calculated by blending cluster colors using weights w.

were needed to model incomplete point tracks. Despite that,
our method was robustly capable to reconstruct unobserved
data with less than 2x higher error than for complete tracks.
Quantitative comparisons with [20] for a fixed number of 15
clusters can be found in Table 4.

The compression ratio for full track points is around 9%
for 50 frames and 4% for 300 frames videos and converges
to a typically small number proportional to cluster number

and reciprocal to the sample number.

4. Conclusions and further work
In this paper, we showed how a generative parametric

deformable model can be recovered for a collection of 3D
point tracks. Furthermore, we showed how the method can
be generalized to perform 3D data completion from partly
observed data. As all inputs of the method are local, in
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Figure 4. Point track completion on the artificial Mixamo data. Each column consisting of four random frames corresponds to different
animation. A Input point tracks. B First three eigenvector displayed as RGB values normalized to [0-255]. C Fourth and fifth eigenvector,
displayed as RG values normalized to [0-255]. D Initial spectral clustering, performed on five eigenvectors. E Completed reconstructions
using low-dimensional model. Point colors calculated by blending cluster colors using weights w. F Complete ground truth point tracks.
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Figure 5. Point track completion on DFAUST dataset [7]. Each column consisting of four random frames corresponds to different
animation. A Input point tracks. B First three eigenvector displayed as RGB values normalized to [0-255]. C Fourth and fifth eigenvector,
displayed as RG values normalized to [0-255]. D Initial spectral clustering, performed on five eigenvectors. E Completed reconstructions
using low-dimensional model. Point colors calculated by blending cluster colors using weights w. F Complete ground truth point tracks.



Complete point tracks Partial point tracks

character animation [20] single shot [20] iterated Ours single shot Ours iterated Ours single shot Ours iterated

mean median mean median mean median mean median mean median mean median

Exo AerialEvade 0.29247 0.15097 0.04441 0.03828 0.03467 0.03422 0.02089 0.01821 0.0761 0.04966 0.05166 0.04065

Exo BreakdanceEnd 0.02711 0.02492 0.01921 0.01584 0.0203 0.01873 0.01244 0.00963 0.02864 0.01935 0.02481 0.01881

Exo SambaDance 0.02574 0.02437 0.01643 0.01406 0.01912 0.01653 0.01428 0.01027 0.04055 0.02364 0.03467 0.02307

Exo StandingDeath 0.04059 0.02981 0.03385 0.02089 0.02384 0.0226 0.01731 0.01345 0.11457 0.02815 0.03864 0.02705

Exo WallClimb 0.02546 0.02321 0.024 0.02171 0.02857 0.02818 0.01792 0.01541 0.03245 0.02958 0.037 0.02875

Prisoner RoundhouseKick 0.02 0.01865 0.01337 0.00965 0.01681 0.01398 0.00945 0.00563 0.04896 0.01876 0.01761 0.01363

Prisoner SitupToIdle 0.03539 0.02981 0.01297 0.01046 0.02431 0.02046 0.00965 0.00785 0.04876 0.02181 0.02924 0.02034

Prisoner Swinging 0.03583 0.03173 0.02203 0.02123 0.04052 0.03947 0.01841 0.01754 0.04419 0.04112 0.03545 0.03307

PumpkinHulk CastingSpell 0.02522 0.01941 0.01608 0.01442 0.02469 0.01958 0.01882 0.01392 0.03068 0.02865 0.02249 0.01862

PumpkinHulk HitOnLegs 0.03534 0.02688 0.02376 0.02014 0.03207 0.02842 0.02457 0.02041 0.03806 0.02932 0.03218 0.02652

PumpkinHulk SideKick 0.02571 0.02163 0.01844 0.01327 0.02265 0.01942 0.01372 0.01212 0.03059 0.02157 0.01845 0.01628

SkeletonZombie Capoeira 0.02039 0.01966 0.01134 0.00935 0.01329 0.01225 0.00965 0.00857 0.0171 0.01363 0.0156 0.0124

SkeletonZombie HipHopDancing 0.03827 0.03275 0.0271 0.02365 0.03669 0.02996 0.02188 0.01727 0.03612 0.03104 0.03312 0.02917

SkeletonZombie HipHopShake 0.02808 0.02525 0.01521 0.0143 0.01778 0.017 0.01074 0.00954 0.0177 0.01557 0.01628 0.01445

Yaku SalsaDancing 0.03479 0.02175 0.0161 0.01359 0.01666 0.01446 0.00786 0.00617 0.01969 0.01649 0.01863 0.01608

Yaku TwoHandSpellCasting 0.02673 0.01704 0.01454 0.01329 0.02191 0.01727 0.01434 0.01305 0.02526 0.02018 0.0231 0.01899

Parasite Crawlback 0.03152 0.02976 0.01914 0.01759 0.03213 0.02997 0.01722 0.01435 0.03906 0.02844 0.03625 0.02712

Parasite HipHopShake 0.02811 0.02802 0.01502 0.01371 0.01968 0.01816 0.0121 0.01102 0.0198 0.01767 0.0191 0.01583

Parasite Jumping 0.02897 0.01954 0.01513 0.0144 0.02578 0.0235 0.01653 0.01459 0.03506 0.02496 0.03061 0.02298

Wolf - 0.03477 0.02974 0.02324 0.02179 0.02932 0.02406 0.02228 0.01905 0.07246 0.04678 0.06801 0.05034

Spider - 0.06216 0.05748 0.02927 0.02577 0.02288 0.02004 0.02133 0.01847 0.02675 0.02215 0.02536 0.02091

Table 2. Quantitative comparison on artificial Mixamo dataset and two additional wolf and spider models from 3dhaupt.com with [20]. The
error is calculated for models scaled to height 1. The original implementation of [20] using only direct one shot output from eigensolver
and we show also comparison with extended iterated version that iteratively re-estimates the limbs and association weights. For comparison
we also report completion results on partial tracks. The reconstruction error was only approximately 2x higher than for complete tracks.
The median error is typically smaller than mean error because of outliers such as moving fingers.

Complete point tracks Partial point tracks

animation [20] single shot [20] iterated Ours single shot Ours iterated Ours single shot Ours iterated

mean median mean median mean median mean median mean median mean median

50002 0.03066 0.02398 0.02072 0.01913 0.02805 0.02508 0.02093 0.01815 0.04261 0.03268 0.03588 0.02524

50004 0.03832 0.03426 0.02417 0.02371 0.03118 0.03028 0.02285 0.02066 0.06637 0.03586 0.04049 0.03209

50007 0.03296 0.02548 0.01948 0.01812 0.03174 0.02623 0.01911 0.01761 0.05591 0.03371 0.03291 0.02581

50009 0.03974 0.03154 0.03057 0.02494 0.02837 0.02684 0.02326 0.02169 0.03761 0.03031 0.03514 0.02647

50020 0.04266 0.03549 0.02938 0.02577 0.0295 0.02817 0.02188 0.01982 0.0589 0.04087 0.0418 0.03252

50021 0.04295 0.03756 0.03411 0.02951 0.036231 0.03138 0.02586 0.02327 0.0505 0.03928 0.04867 0.03561

50022 0.05381 0.04015 0.03334 0.02711 0.03018 0.02976 0.0218 0.0215 0.07112 0.03843 0.04857 0.03628

50025 0.04493 0.04013 0.02901 0.02655 0.03355 0.02974 0.02832 0.02333 0.04847 0.03825 0.03857 0.03113

50026 0.04113 0.03162 0.02729 0.02397 0.03522 0.0305 0.02221 0.02032 0.04458 0.03426 0.03425 0.02639

50027 0.05594 0.043 0.02493 0.02126 0.03512 0.03122 0.02274 0.02031 0.04346 0.03585 0.03473 0.02838

Table 3. Quantitative comparison on DFAUST dataset [7]. The error is calculated for models scaled to height 1. The original implementation
of [20] using only direct one shot output from eigensolver and we show also comparison with extended iterated version that iteratively
re-estimates the limbs and association weights. The algorithm performed only slightly worse than for artificial data, mainly because the
real data is not generated using the estimated data structure. For comparison we also report completion results on partial tracks. The
reconstruction error was surprisingly less than 2x higher than for complete tracks.

the future we plan to investigate data completion from 2D
point tracks. Furthermore, the local nature makes the 2D

convolutions suitable, and thus deep learning applicable to
train the deformation directly from the image data.
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