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This supplementary material provides more results on the LaMAR datasets,
an alternative solution to the problem based on changing the standard 3-DoF
optimization, analysis of the period estimation, comparisons with deep learning-
based alternatives, results with gravity-aligned essential matrix, implementation
details for Theia baselines, and detailed experiment results.

A Additional Results on LaMAR

AVG (◦) MED (◦) AUC@0.5◦ @1◦ @2◦ Time (h)

LM 3DoF 52.30 32.36 0.07 0.35 1.26 4.08 ×10−2

LM 1DoF 44.90 31.61 0.28 0.73 1.81 1.69 ×10−2

Theia [12] 3.46 1.28 3.28 13.92 34.62 3.88 ×10−2

Theiareg [4] 8.14 1.13 5.36 17.65 39.42 4.31 ×10−2

Proposed 7.19 1.06 7.63 20.46 42.02 1.21 ×10−2

COLMAP [11] 34.18 1.42 9.63 22.59 36.09 98.52

Fig. 1: Results for on LaMAR [10]. Only images taken by Hololens data are with
gravity, thus [2, 5] are not applicable.

In the main paper, we consider gravity directions only in the data captured by
smartphones to test the mixed scenario. Here, we provide additional results for
when HoloLens directions are used instead of the ones captured by smartphones.
Moreover, we show results when both data sources have known gravity directions.

The results considering gravity only in the HoloLens sequences are in Fig. 1.
Planar pose graph optimization methods [2, 5] are excluded since they are not
applicable in the mixed scenario. A similar trend can be observed as in the case
when only gravity captured by smartphones is known (Table 4 in the main pa-
per). The proposed method achieves higher AUC scores than Theia-based ones
and is about 3-4 times faster. While the proposed method has a higher aver-
age error than the algorithm implemented in Theia [12], it is important to note
that the average error is usually not representative in such problems since it is
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not a robust measure. In all other metrics, the proposed method significantly
outperforms Theia. The proposed method is on par with COLMAP [11], having
slightly lower AUC scores at 0.5◦, 1◦ and a higher AUC score at 2◦. The proposed
method also achieves lower mean and median errors and is faster by several or-
ders of magnitude. The cumulative distribution functions (CDF) of the absolute
rotation errors are also shown in Fig. 1. The proposed method approaches the
top left corner most, indicating its accuracy.

Table 1: Average and median rotation errors (◦), the AUC score at 0.5◦, 1◦, and 2◦

and average run-time (hour) on LaMAR [10]. Images without gravity are excluded.

AVG (◦) MED (◦) AUC@0.5◦ @1◦ @2◦ Time (h)

LM 3DoF 52.31 32.20 0.08 0.36 1.25 4.05 ×10−2

LM 1DoF 46.25 35.76 0.26 0.78 1.98 1.28 ×10−3

LAGO [2] 51.28 37.17 0.33 0.94 2.22 5.18 ×10−3

CPL-Sync [5] 11.57 7.95 0.92 2.63 6.27 3.09 ×10−3

Theia [12] 3.52 1.28 3.26 13.82 34.36 4.03 ×10−2

Theiareg [4] 4.26 1.04 7.12 20.91 41.99 3.79 ×10−2

Proposed 2.90 0.94 9.32 23.85 46.24 3.88 ×10−3

COLMAP [11] 9.68 0.88 12.71 28.38 44.22 98.52

The results for the case when gravity is available for both types of images are
in Table 1. We exclude approximately 150 images in total from this experiment
for which the dataset does not provide gravity directions, and we keep only the
largest connected component. This is necessary to test [2,5]. Despite our tuning
efforts, LAGO [2] and CPL-Sync [5] do not achieve reasonable accuracy on this
dataset. The proposed method achieves higher AUC scores at 0.5◦, 1◦, and 2◦

compared with Theia-based methods and is about an order of magnitude faster.
The cumulative distribution functions (CDF) of the absolute rotation errors

can be found in Figure 2c. The curve of the proposed method (red) is closest to
the top left, implying that it obtains the most accurate estimation.

B Alternative Representation

As mentioned in the main text, an alternative way to achieve 1DoF optimiza-
tion is to constrain the update step in the numerical optimization so that it only
changes the rotation around the y-axis. More precisely, in each optimization step,
the updates on rotations are projected to be around the y-axis. Though minimiz-
ing the same loss function as the proposed method, the alternative formulation
requires solving a larger linear system. As a result, it achieves similar accuracy
at the cost of a significantly longer runtime compared to the proposed method.
Furthermore, it is not applicable when gravity is partially known. A detailed
analysis of the relationship between the proposed method and such alternative
formulation can be found in Section C. We will call this alternative formulation
Proposedalt.

The cumulative distribution functions (CDF) of the absolute rotation errors
are shown in Fig. 2. As expected, the curves of the alternative formulation and
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(a) EuRoC [1] (b) KITTI [6] (c) LaMAR [10] (d) 1DSfM [14]

Fig. 2: The cumulative distribution functions (CDFs) of the absolute rotation er-
rors (◦). Estimated by the Levenberg-Marquardt [8] method solving the 3-DoF (LM
3DoF) and 1-DoF (LM 1DoF) problems, by LAGO [2], by CPL-Sync [5], by the rota-
tion averaging in the Theia library [3, 12], by Theia with an additional penalty term
(Theiareg [4]), by projecting updates to y-axis (Proposedalt), by COLMAP [11], and
by the proposed method. Curve "Gravity" stands for the approximate upper bound
achievable by using gravity direction. A method being accurate is interpreted by its
curve close to the top-left corner.

Table 2: Runtime (s) for the projected method and direct optimization on the mani-
fold. The latter is 4-9 times faster.

EuRoC [1] KITTI [6] LaMAR [10] 1DSfM [14]

Proposedalt 0.84 0.74 113.76 26.54
Proposed 0.20 0.20 13.98 4.38

the proposed methods nearly overlap, indicating that they obtain similar results.
The runtimes are summarized in Table 2. The proposed formulation, directly
optimizing on the manifold, leads to a consistent 4-9 times speedup compared
to the alternative method.

C Spectrum of Constraints

In this section, we further inspect the formulation that incorporates gravity as
an extra penalty term. We show how it allows a spectrum of problems, varying
from unconstrained to hard-constrained, and how it can be converted into the
proposed method under a specific condition.

Recall the objective function with an extra penalty term (Eq. 21 in the main
paper) is formulated as

arg min
{Ri}

∑
(i,j)∈E

ρ
(
d(R⊤

j R̃ijRi, I)
p
)
+
∑
i
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(
d(θ ·
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Since dgeod(R,S) ≈ ∥θRvR − θSvS∥2, ∥θ · (vi − (v⊤
i gi)gi)∥2 approximates the

angle distance of Ri from the closest upright rotation. Thus, the proposed for-
mulation is similar to the penalty in [4].

Parameter λ in Eq. (1) controls the weighting between consistency with the
relative pose and the measured gravity. When λ is 0, the second part of the
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(a) median gravity error vs AUC@1◦. α = 1 corresponds to σgrav equals
0.54◦, 0.20◦, and 0.31◦ respectively

(b) outlier vs AUC@1◦

Fig. 3: Sensitivity analysis w.r.t. gravity noise and outlier ratio in the measured rel-
ative poses. For the left plots, gravity are synthesized by interpolating between noisy
measurements and ground truth with different weights. For the right plot, synthetic
experiments with grid setting are conducted. In these experiments, different level of
outlier are tested with fixed noise level on gravity and relative poses.

objective function can be factored out, and Eq. (1) restores the original 3DoF
optimization. Naturally, as λ increases, more emphasis is put on the consistency
with measured gravity. As a result, varying the level of λ forms a spectrum of
problems, ranging from soft-constrained to hard-constrained ones. Worth noting
is the case when λ = ∞. The optimal solution in this case should possess the
following property: ∥∥θ · (vi − (v⊤

i gi)gi
)∥∥ = 0. (2)

To fulfill the above condition, the downward direction in the estimated rotation
should be the same as the measured gravity. If an iterative process solves the
optimization, in each step, the updates are projected to act around the gravity
direction. As a result, the problem becomes the same as what is presented in
Section B.

Besides varying the problem from non-constrained to hard-constrained ones,
the above formulation also bridges the proposed method to the original 3DoF
optimization. When λ = ∞, suppose the rotation are pre-aligned that gravity
direction gi is [0, 1, 0]⊤. Plugging this into the optimization process gives that
vt
x = vt

z = 0. This means the x, z components remain 0 across the optimization
process, thus the linear systems corresponding to these two rotation components
become redundant. Removing them results in a smaller linear system equivalent
to the proposed system in the paper. This observation also directly suggests the
efficiency of our methods. While our method reduces the number of equations
in the linear system by ∼ 2m where m is the number of pairs, formulation with
soft penalty adds ∼ 2n additional equations where n is the number of images.

D Sensitivity Analysis

In this section, we analyze the sensitivity of the method in the presence of noise
and outliers. In particular, we report the AUC score as a function of gravity
noise and the outlier ratio in the pre-estimated relative poses.

To analyze the sensitivity of the method to gravity noise, we alternate the
level of noise in gravity by interpolating between measured and ground-truth
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gravity. More concretely, it is formulated as

gα
i =

α · gi + (1− α) · ggt
i∥∥α · gi + (1− α) · ggt
i

∥∥ , (3)

where gi is the measured gravity, ggt
i is the ground truth gravity, and α controls

the level of noise. Such a setting allows for progressively mixing the noise in
the measurements to the ground truth direction. We vary α from 0.5 to 5, and
results are summarized in Figure 3a. The x-axis in the plot is the median gravity
error, and α = 1 corresponds to σgrav = 0.54◦, 0.20◦ and 0.31◦ respectively.
From the figure, it can be observed that methods incorporating gravity, i.e. the
proposed method and Theia with extra penalty term (Theiareg), produce more
accurate results compared to the original 3DoF optimization. This finding further
motivates the use of gravity in the rotation averaging problem. Additionally, the
proposed method obtains the most accurate estimations among all methods.
This holds until ∼ 0.7◦ on the datasets we tested. Such levels of accuracy can be
satisfied by commercial sensors as the median gravity errors on EuRoC [1] and
KITTI [6] are 0.54◦ and 0.20◦, respectively. On LaMAR [10], the median error
of HoloLens images is 0.34◦, and that of smartphone images is 0.26◦.

To analyze the sensitivity of the method to outliers, we conducted synthetic
experiments with varying levels of outliers. There, we apply the same grid setting
as in the synthetic experiments in the main paper. For a brief recap, we assume
that the cameras form a 2D grid, and each camera is connected with the closest
24 grid neighbors. In the experiments, the noise level for gravity prior is fixed
to be 0.25◦ which is comparable to that of gravity measurements. As for the
relative pose, we add zero-mean noise by applying random rotations with a
standard deviation of 1◦. To inject outliers, a uniformly randomly drawn set
of relative poses is replaced by random rotations. Results are summarized in
Figure 3b. The plot shows that the performance of the proposed method and
baselines are similar when the relative poses are outlier-free. As the outlier ratio
increases, the accuracy in estimation for all methods degrades at different rates.
LAGO [2] is subject to drastic performance drop as the outlier ratios increase,
validating the claim that its heuristic approach for fixing the period is not robust.
CPL-Sync [5] is similarly sensitive to outliers. In contrast, Theia-based baselines
and our method are robust in the presence of outliers. Among all, the proposed
method undergoes the least performance drop as the outlier ratio increases. For
the proposed method, the AUC score at 1◦ only decreases by 11% while those
for Theia and Theia with penalty terms drop by 32% and 24%, respectively.

E Effect of Iteration on Period Estimation

LAGO [2] estimates periods for edges from a coarse initialization. Such a heuristic
approach often fails on different datasets. For example, on the LaMAR dataset,
the AUC score of LAGO at 1◦ is only 0.94, while that of the proposed is 23.85,
and on 1DSfM, the scores are 7.96 and 29.41, respectively. We conduct exper-
iments on 1DSfM [14], EuRoC [1], KITTI [6], and LaMAR [10] to analyze the
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(a) accuracy of period and camera pose estimation across iterations.
k is the period number

(b) effect of fixing period

Fig. 4: Period estimation can have a large impact on the accuracy of rotation averaging.

accuracy of period estimation (correct ratio) for LAGO [2] and the proposed
iterative solution. Also, we analyze the relationship between period estimation
and accuracy.

To calculate the ground truth periods, first, the ground truth rotations are
globally aligned with the estimated results and are adjusted to be at most π
radian to the estimation. Then, ground truth periods for edges are calculated
using the same formulation as in LAGO [2] with the adjusted ground truth
rotations.

Results are in Fig. 4a. For iteration 0, the rotations for our method are
initialized to be identity. As LAGO is not an iterative method, we report its
error as a constant number across iterations. From the plot, one can observe that
the correct ratio is monotonically increasing for the proposed method. Also, the
convergence rate is generally fast and the proposed method can achieve almost
100% correct ratio within 5 iterations. This indicates the effectiveness of the
proposed mechanism. While for LAGO [2], though we can observe it obtain high
correct ratio on the EuRoC [1] and KITTI [6] datasets, which are within the
domain the method was originally tailored for, its performance largely drops on
other datasets. As a result, LAGO fails.

The right plot of Fig. 4a shows the relationship between estimation accuracy
and iteration. By reading the correct ratio from the left plot and the AUC score
on the right plot, one can notice a strong positive correlation between these two
variables. Across iterations, the accuracy of the rotation orientation increases,
leading to a more accurate estimation of periods. These estimations can later
contribute to a more accurate rotation estimation, and finally, the estimation
converges to the desired result.

Fig. 4b shows the importance of alternating period estimation in the opti-
mization as proposed in the main paper. As from Fig. 4a, the estimations of
periods on EuRoC [1] and KITTI [6] are error-free, we only show the result on
the LaMAR [10] dataset. From the plot, it can be seen that the accuracy of the
rotation averaging is largely affected by the accuracy of initial period estimation,
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Table 3: Results on 1DSfM dataset [14]. Columns marked with † are from the respec-
tive paper. We use ground truth with 0.5◦ standard deviation error as gravity.

DMF-SYNCH† NeuRoRa† MSP† PoGO-Net† Proposed[13] [9] [15] [7]
ALM 1.2 1.2 1.07 0.85 0.90
ELS 0.8 0.6 0.83 0.43 0.52
GDM 10.5 2.9 3.69 - 0.96
MDR 2.3 1.1 1.09 0.96 0.67
MND 0.6 0.6 0.50 0.37 0.51
NYC 1.8 1.1 1.12 0.88 1.03
PDP 1.0 0.7 0.76 0.81 0.66
PIC - 1.9 1.80 1.75 0.80
ROF 1.8 1.3 1.19 0.69 0.71
TOL 2.7 1.4 1.25 0.43 0.64
TFG - 2.2 - 1.70 0.86
USQ 4.4 2.0 1.85 1.25 1.52
VNC 1.6 1.5 1.10 1.44 0.74
YKM 1.7 0.9 0.91 0.72 0.72

even if a robust estimation scheme is deployed. This indicates the necessity of
deploying the circular regression.

F Comparison with Learning-based Methods

F.1 Unordered Image Collections

In this section, we compare with the recent learning-based DMF-SYNCH [13],
NeuRoRA [9], MSP [15] and PoGO-Net [7]. Results on the 1DSfM dataset are
reported in Table 3. The results in the table are directly taken from the respective
papers. Given that we do not have a measured gravity direction, similarly as
in the main paper, we take the gravity from the ground truth rotations and
add zero-mean Gaussian noise with 0.5◦ standard deviation. The most accurate
learning-based method is PoGO-Net. Over the scenes where results are provided
(all, except for Gendarmenmarkt), the average rotation error of PoGO-Net is
0.96◦, while that of the proposed method is 0.79◦. On Gendarmenmarkt, PoGO-
Net results are missing due to its high memory requirement, while the proposed
method leads to significantly more accurate results than others. Given that the
gravity error is lower than 0.5◦ on most of the tested datasets, we expect even
larger differences in practice.

F.2 Sequential Image Collections

On the KITTI [6] and EuRoC [1] datasets, we failed to achieve reasonable re-
sults for DMF-SYNCH [13], NeuRoRA [9] and MSP [15] even when using the
code provided by the authors and retraining their models. As DMF-SYNCH is
a method based on matrix completion, it requires not too sparsely connected
graphs, which sequential datasets generally do not satisfy. For the shortest se-
quence 04 in KITTI, which only contains 277 images, DMF-SYNCH can achieve
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a median error at the level of 10◦. But for sequences with more than 1000 im-
ages, we failed to achieve a median error below 30◦. Also, the parameters to learn
grow quadratically with the number of images, making the method impractical
for sequences with more than a few thousand images.

The sparsity also poses challenges to NeuRoRA [9] and MSP [15], which
are graph-neural-network-based methods. They contain two parts: a view-graph
cleaning component and a rotation refinement component. The first component
in both works rejects outliers and refines relative rotations. Then, NeuRoRA and
MSP initialize global rotation estimation via a minimal spanning tree on the
input view graph. After coarse initialization, they both proceed with a network
called FineNet, which refines the rotations.

We attempted to run NeuRoRA [9] in different ways. We tried the weights
provided by the authors, finetuning the network on 1DSfM, finetuning on KITTI,
and finetuning on EuRoC. All such tests led to inaccurate results. To eliminate
the effect of the potentially failing first step (i.e., view-graph cleaning), we tried
providing the ground truth outlier information as initialization for the refinement
module. Since the remaining relative poses are generally accurate, the obtained
initialization is reasonable, with median errors generally below 3◦ for EuRoC
and KITTI sequences. Despite this accurate initialization, FineNet consistently
(with all training strategies) reduced the accuracy instead of improving it. We
conclude that these two methods are not suitable for the rotation averaging on
KITTI, EuRoC, and LaMAR datasets featuring long sequential image streams.

Table 4: Mean rotation error (◦) on sequence 02 and 08 in KITTI [6]. Results with †

are taken from the original paper.

PoGO-Net [7]† Proposed

KITTI-02 1.08 0.46
KITTI-08 2.17 0.53

As PoGO-Net [7] has no official code available, we report the errors on the
KITTI dataset in Table 4 as provided in the original paper. The proposed method
substantially improves upon PoGO-Net on both sequences.

G Results with Gravity-Aligned Essential Matrix

The results when using 3-DoF and 5-DoF relative poses as input are reported
in Table 5. The 3-DoF essential matrix solver is incorporated within the same
LO-RANSAC framework used in other experiments to estimate gravity-aligned
essential matrix. We allow for full 5 DoF optimization in the essential matrix
estimation. We can see that the gravity-aligned essential matrix improves almost
all results, except for Theia’s AVG error on KITTI. The proposed method is still
significantly more accurate than Theia [12].
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Table 5: Results with relative poses from both 5-DoF solvers and 3-DoF solvers for
EuRoC and KITTI dataset.

AVG (◦) MED (◦) AUC@0.5◦ @1◦ @2◦

E
uR

oC Proposed 5DoF 0.65 0.35 32.68 53.89 72.11
3DoF 0.62 0.34 33.94 56.64 74.12

Theia 5DoF 0.88 0.54 22.01 43.30 64.92
3DoF 0.77 0.48 23.56 47.05 68.80

K
IT

T
I Proposed 5DoF 0.39 0.29 48.71 69.79 83.86

3DoF 0.39 0.27 50.69 70.51 83.98

Theia 5DoF 0.68 0.64 25.96 47.48 71.77
3DoF 2.52 0.54 28.79 52.58 72.92

H Implementation Details for Theia Baselines

For the ease of implementation of Theia with regularization terms, we pre-align
the camera rotations with the gravity prior. Thus, the estimated rotations are
around (0, 1, 0)⊤. In this case, the first and the last term for camera rotations
should be 0. We can directly penalize these two terms as the deviation from the
prior. After appending these linear systems to the system, the problem can be
solved as in Theia [12].

I Detailed Experiment Results

Per sequence result for EuRoC [1] and KITTI [6] for the proposed method are
summarized in Table 6, 7. From the tables, one can observed that the proposed
method achieves accurate rotation estimation consistently across the datasets.

Table 6: Full results of the proposed method for EuRoC [1]

MH_01 MH_02 MH_03 MH_04 MH_05 V1_01 V1_02 V1_03 V2_01 V2_02 V2_03

mean 0.78 0.21 0.20 0.46 0.18 1.79 0.32 0.58 0.48 0.69 0.63
median 0.26 0.21 0.15 0.35 0.16 1.48 0.32 0.56 0.48 0.58 0.57

Table 7: Full results of the proposed method for KITTI [6]

01 02 04 05 06 07 08 09 10

mean 0.35 0.46 0.07 0.39 0.20 0.38 0.53 0.23 0.22
median 0.32 0.40 0.06 0.35 0.15 0.24 0.30 0.19 0.20
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