ETHzürich

Computer Vision and Geometry Lab

Task

- Estimating full 6 degree-of-freedom (DoF) without knowledge of intrinsic calibration
- Full bundle adjustment with implicit camera calibration model

Methodology **Objective Function**

Decomposition of reprojection error

$$\|\boldsymbol{x} - \boldsymbol{z}\|^2 = \underbrace{\|(I - \frac{\boldsymbol{z}\boldsymbol{z}^\top}{\boldsymbol{z}^\top\boldsymbol{z}})\boldsymbol{x}\|^2}_{\varepsilon_r} + \underbrace{\|\frac{\boldsymbol{z}\boldsymbol{z}^\top}{\boldsymbol{z}^\top\boldsymbol{z}}(\boldsymbol{x} - \boldsymbol{z})\|^2}_{\varepsilon_t}$$

- radial distortion
- Replacement of ε_t with $\mathcal{R}(f)$
- Proposed objective function

References

Camera Pose Estimation using Implicit Distortion Models

Linfei Pan¹ ¹ ETH Zurich

Marc Pollefeys^{1,2} ² Microsoft

• ε_r can be calculated without knowing the focal length or

 $\min_{R, \boldsymbol{t}} \sum \varepsilon_r(R, \boldsymbol{t}, \boldsymbol{x}_i, \boldsymbol{X}_i) + \mathcal{R}\left(\{f_i\}_{i=1}^N\right)$

[1] Y. Lochman, et. al. Babelcalib: A universal approach to calibrating central cameras. ICCV 2021 [2] V. Larsson et. al. Calibration-free structure-from-motion with calibrated radial trifocal tensors. ECCV, 2020 [3] C. Olsson et. al. Stable structure from motion for unordered image collections. SCIA, 2011. [4] T. Sattler et. al. Benchmarking 6dof outdoor visual localization in changing conditions, 2018 [5] H. Taira et. al. Inloc: Indoor visual localization with dense matching and view synthesis, 2018

Non-Parametric Intrinsic Calibration

Bundle Adjustment

$$\tilde{\boldsymbol{f}}^{i} = \left[f_{i-m}(\boldsymbol{X}_{i}^{t})\right]$$

- Fix the structure of neighboring points, but still optimize *R*, *t*
- Schur complement trick becomes applicable again

Viktor Larsson³ ³ Lund University

$$\mathcal{R}(\boldsymbol{f}) = \sum_{i} \varrho_{\epsilon} \left(\left| f_{i} - \tilde{f}_{i} \right| \right) = \sum_{i} \varrho_{\epsilon} \left(\left| \boldsymbol{a}_{i}^{\mathsf{T}} \boldsymbol{f} \right| \right)$$

$$N(p_{i})_{2}$$
Neighbors of p_{i}

• The regularization relies on the dependence between structure • To break the dependence of structure, solve a surrogate problem instead

-1.0 -0.5 0.0 0.5

 $\begin{bmatrix} t-1\\ i-m \end{bmatrix} \cdots f_i(\boldsymbol{X}_i) \cdots f_{i+m}(\boldsymbol{X}_{i+m}^{t-1}) \Big]^\top$

Experiments

Qualitative Results

Checkerboard Calibration • on dataset from BabelCalib [1] , Lochman et al., 2021

		Proposed		Camposeco et al. [6]				[25]		Proposed		Camposeco et al. [6]	
	ϵ_{rot}	ϵ_{pos}	$< 1^{\circ}, 1\%$	ϵ_{rot}	ϵ_{pos}	$< 1^{\circ}, 1\%$		ϵ^{BC}_{rms}	ϵ_{pp}	ϵ_{rms}	< 1 p x	ϵ_{rms}	< 1 p x
OV corner	1.07	0.58	122 / 280	1.20	0.59	81 / 280	OV corner	1.52	16.28	2.09	16/120	2.96	0/120
OV cube	0.07	0.03	105 / 105	0.04	0.11	105 / 105	OV cube	0.29	0.40	0.31	49/49	0.40	49/49
OV plane	1.23	6.78	35 / 92	1.06	1.78	32/92	OV plane	0.60	0.89	0.82	33/41	2.84	9/41
Kalibr	0.17	0.18	277 / 280	0.31	0.86	231/280	Kalibr	0.21	0.88	0.30	118/120	0.61	113/120
OCamCalib	0.62	0.26	61 / 79	0.58	0.59	55 / 79	OCamCalib	0.68	2.17	0.97	31/40	2.62	17/40
UZH DAVIS	0.74	1.91	110 / 140	2.14	8.28	62 / 140	UZH DAVIS	0.41	0.37	0.42	58/60	0.72	49/60
UZH Snapdragon	0.16	0.25	137 / 140	0.43	0.89	122 / 140	UZH Snapdragon	0.26	0.56	0.28	60/60	0.46	59/60

Structure from Motion

Self Calibration in Visual Localization

Aachen Day-Night [37]		day	night
	Proposed (w/ filter)	58.3 / 76.5 / 94.2	61.2 / 77.6 / 99.0
Single image	Proposed (w/o filter)	51.3 / 67.4 / 92.8	50.0 / 68.4 / 94.9
	Camposeco et al. [6]	46.0 / 61.9 / 83.1	45.9 / 69.4 / 85.7
	Proposed (w/ filter)	82.6 / 92.4 / 98.3	73.5 / 88.8 / 100.0
Multiple images	Proposed (w/o filter)	77.8 / 90.8 / 98.3	73.5 / 88.8 / 100.0
	Camposeco et al. [6]	18.6 / 34.3 / 83.5	37.8 / 63.3 / 99.0
Demonstrie medal	hloc [33] + GT calib.	89.6 / 95.4 / 98.8	86.7 / 93.9 / 100.0
Parametric model	hloc [33] + [21]	60.6 / 82.8 / 98.2	64.3 / 82.7 / 100.0
InLoc [40]		duc1	duc2
	Proposed (w/ filter)	28.3 / 46.0 / 63.6	26.7 / 48.1 / 61.8
Single image	Proposed (w/o filter)	29.8 / 46.5 / 64.6	26.0 / 42.7 / 59.5
	Camposeco et al. [6]	23.2 / 40.4 / 55.1	18.3 / 31.3 / 42.7
	Proposed (w/ filter)	34.8 / 52.5 / 69.7	38.9 / 57.3 / 74.0
Multiple images	Proposed (w/o filter)	35.4 / 53.0 / 69.7	35.9 / 58.0 / 74.0
- •	Camposeco et al. [6]	34.8 / 51.0 / 69.2	35.1 / 58.0 / 74.0
Danamatria madal	hloc [33] + GT calib.	46.5 / 66.2 / 78.3	51.9 / 74.8 / 78.6
Parametric model	hloc [33] + [21]	25.8 / 47.5 / 62.6	27.5 / 55.0 / 66.4

Aachen Day-Night [4] and InLoc [5] Challenge

Grossmunster [2]

Implicit Distortion in Bundle Adjustment

Kirchenge and Grossmunster [2]; Kazan and Doge Palace [3]